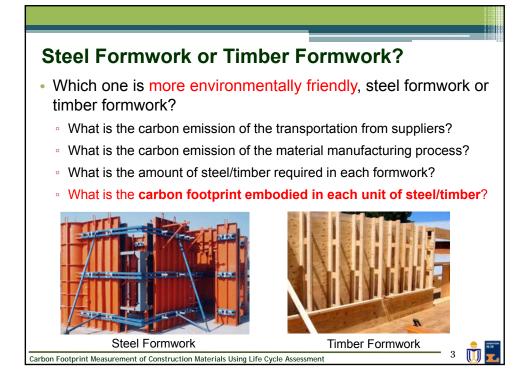
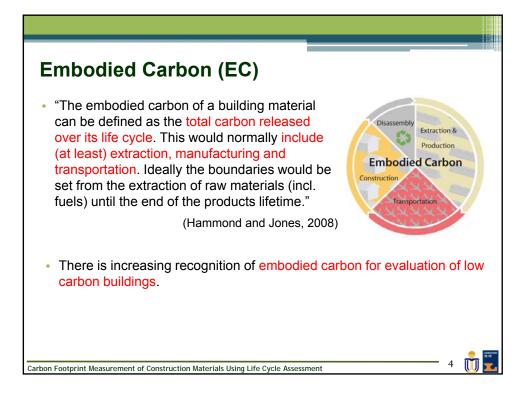
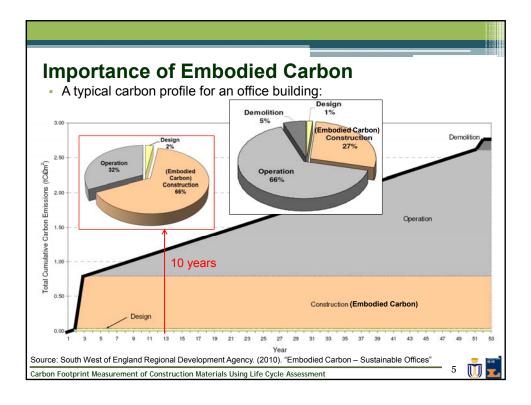
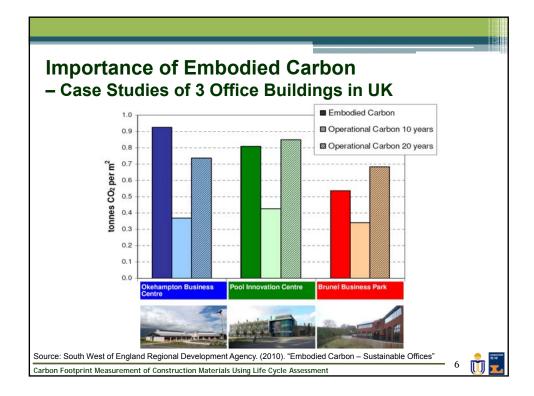
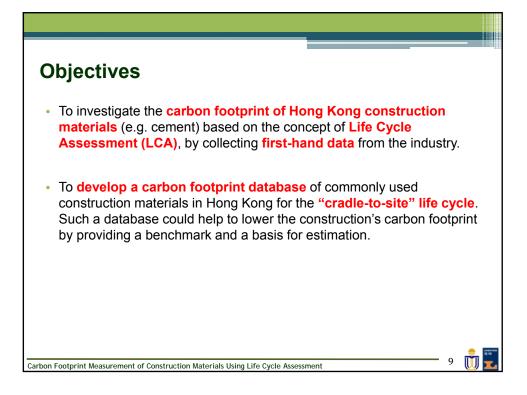

Carbon Footprint Measurement of Construction Materials Using Life Cycle Assessment

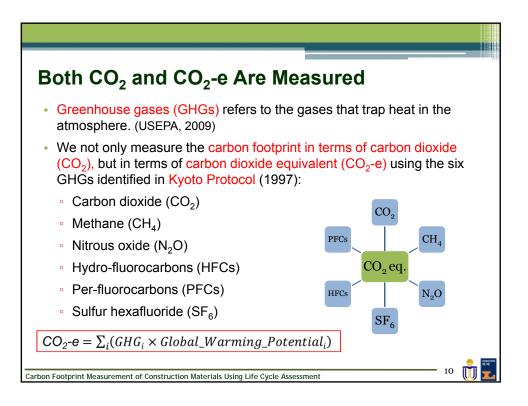

Dr Jack C.P. Cheng (Speaker), Assistant Professor Ir Prof Irene M.C. Lo, Professor Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology

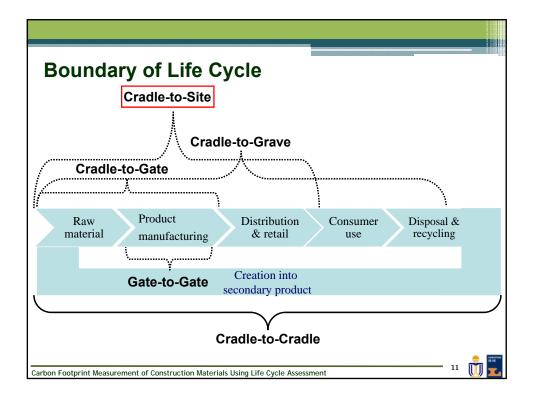

Ir Desmond M.S. Sze, Operations Manager Mr Anfernee K.P. Chow, Environmental Officer Leighton Contractors (Asia) Limited

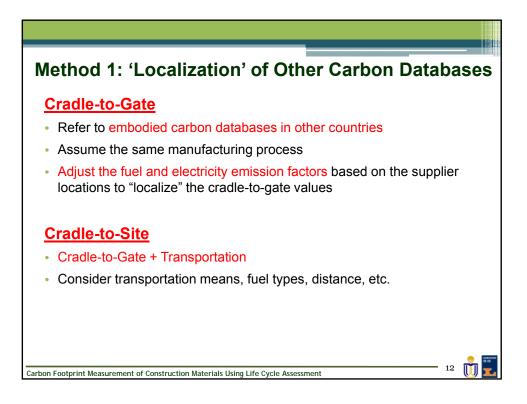



The HKIE Environmental Division Annual Seminar 2013 22 March 2013

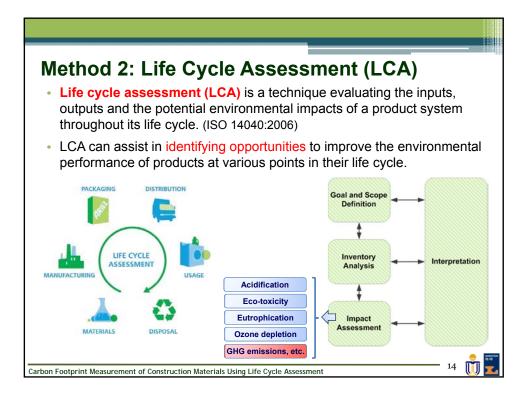

		a Local Construction Ma ase for Hong Kong	terial
a bend	hmark for green mater	e for construction materials car ial selection and green label de ediction and estimation of carbo	velopment,
 Emboor 	died carbon values are	region-specific.	
Region	Construction Life Cycle Inventory (LCI)	Institution	System Boundary
Swiss	Ecoinvent	Swiss Centre for Life Cycle Inventories	Gate-to-gate
Europe	ELCD (European reference Life Cycle Database)	European Union	Cradle-to-gate
United Kingdom	ICE (Inventory of Carbon and Energy)	University of Bath, UK	Cradle-to-gate
China	CLCD (Chinese reference Life Cycle Database)	Sichuan University, China; IKE Environmental Technology Co. Ltd	Cradle-to-gate
Korea	Korea LCI Database	Korea Institute of Industrial Technology; Ministry of Environment	Cradle-to-gate
Hong Kong		None	

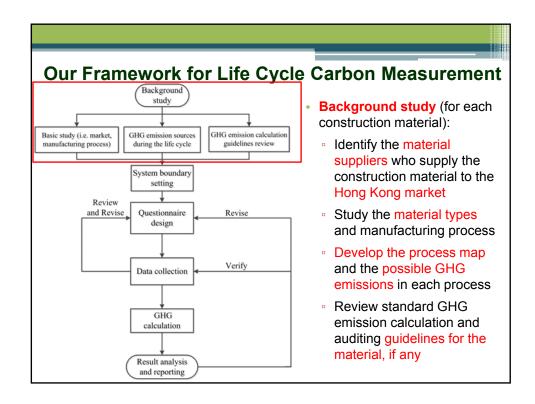

Motivation – We Need a Local Construction Material
Embodied Carbon Database for Hong Kong

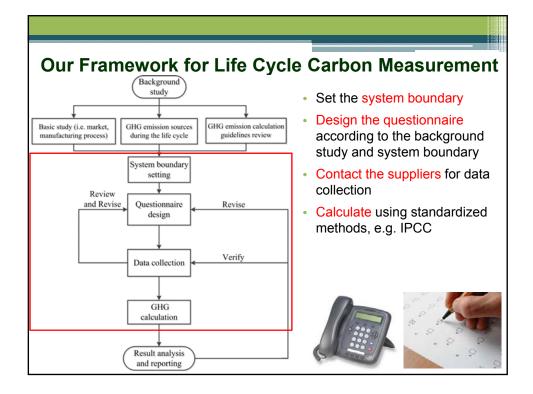

• An embodied carbon database for construction materials can (1) provide a benchmark for green material selection and green label development, and (2) provide a basis for prediction and estimation of carbon footprint.

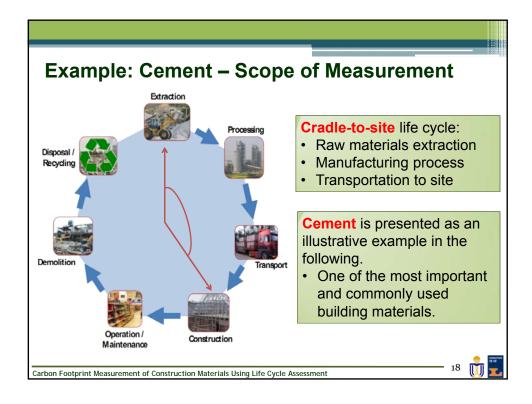

 Embodied car 	rbon values are r	egion-specific.
----------------------------------	-------------------	-----------------

Region	Construction Life Cycle Inventory (LCI)	Institution	System Boundary
Swiss	Ecoinvent	Swiss Centre for Life Cycle Inventories	Gate-to-gate
Europe	ELCD (European reference Life Cycle Database)	European Union	Cradle-to-gate
United Kingdom	ICE (Inventory of Carbon and Energy)	University of Bath, UK	Cradle-to-gate
China	CLCD (Chinese reference Life Cycle Database)	Sichuan University, China; IKE Environmental Technology Co. Ltd	Cradle-to-gate
Korea	Korea LCI Database	Korea Institute of Industrial Technology; Ministry of Environment	Cradle-to-gate
Hong Kong	ECO-CM Database	Dept. of Civil and Environmental Engineering, HKUST	Cradle-to-site; C-to-G; G-to-G



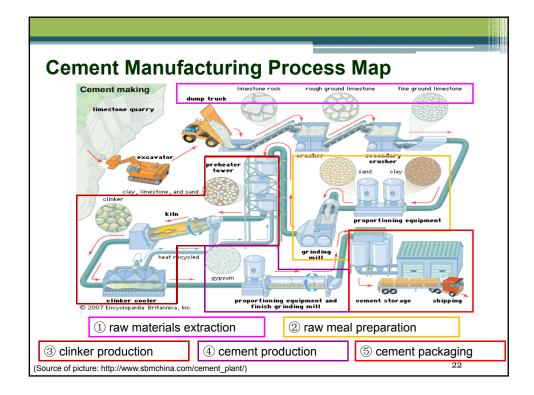

Energy sour	ces for (plywood)	wood boards p	roduction acco	ording to Bath U ICE	
Energy source	% of Embodied Energy from energy source	Emission Factors for NZ (t CO₂/MWh)	Emission Factors for NZ (t CO ₂ /MJ)	Equivalent emission factor for NZ (t CO ₂ /MJ)	
Coal	0.0%				
LPG	0.0%				Unit conversion:
Oil	5.6%	0.2667 ^[1]	7.40833E-05	4.14867E-06	1 MWh = 3600 M
Natural gas	39.5%	0.202 [1]	5.61111E-05	2.21639E-05	
Electricity	54.9%	0.159 ^[2]	4.41667E-05	2.42475E-05	
Other	0.0%				
Tota	l 100.0%			5.05601E-05	
	Energy of Timber, n ICE database	15	(M MJ/kg		Bath U ICE: nber, Plywood:
Timber, F	nbodied Carbon of Plywood in ICE atabase:	0.77 ←	kg CO ₂ /kg		: 15 MJ / kg : 0.81 kg CO ₂ /kg

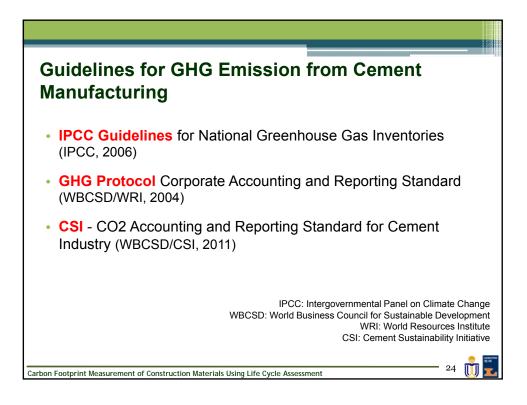


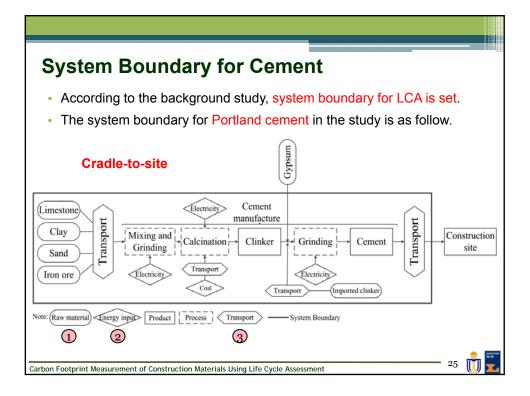

Standards

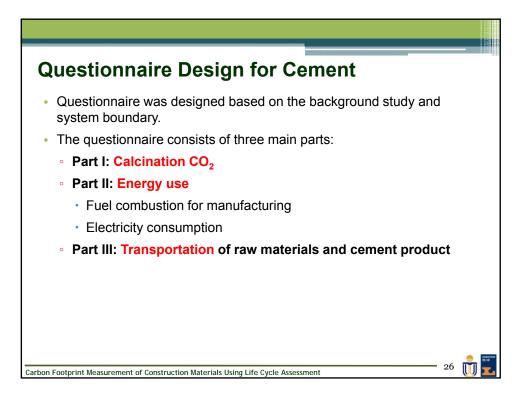
 The following standards are referenced when we developed our methodology framework.

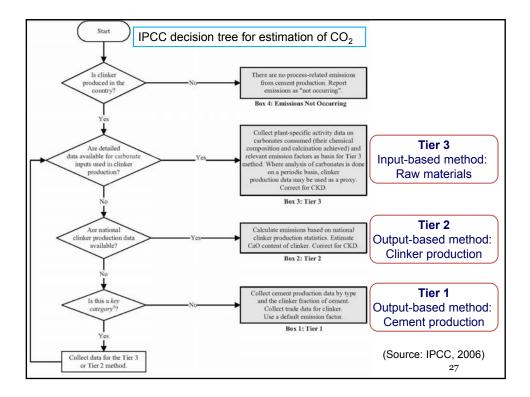
Standards	Areas
ISO 14040:2006 Environmental management - Life cycle assessment - Principles and framework	LCA
ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines	LCA
ISO 14064-1:2006 Greenhouse gases - Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals	GHG Auditing (Organizational)
PAS 2050:2011 Specification for the assessment of the life cycle greenhouse gas emissions of goods and service	GHG Auditing (Product)
ISO 14067 Carbon footprint of products Requirements and guidelines for quantification and communication (Not yet released)	GHG Auditing (Product)
(NOT yet released)	15

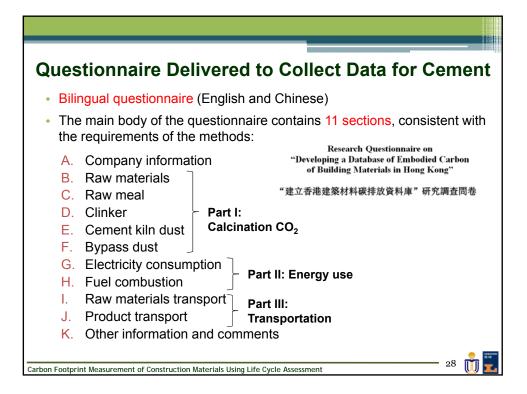


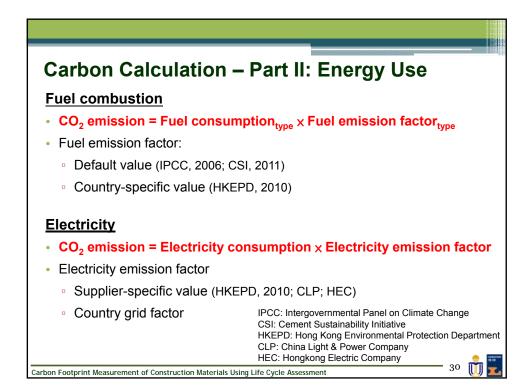

• A		o American Society for Tes		× ,
Types	Types Name	and Applications of Standard	Limitation	Application
Туре І	Ordinary	55% (C ₃ S), 19% (C ₂ S), 10% (C ₃ A), 7% (C ₄ AF), 2.8% MgO, 2.9% (SO ₃), 1.0% Ignition loss, and 1.0% free CaO	C₃A≦15%	General use; when special properties are not required, floors, reinforced concrete structures, pavements, etc.
Type II	Moderate Sulfate Resistance	51% (C ₃ S), 24% (C ₂ S), 6% (C ₃ A), 11% (C ₄ AF), 2.9% MgO, 2.5% (SO ₃), 0.8% Ignition loss, and 1.0% free CaO	C₃A≦8%	General use; has moderate sulfate resistance and heat of hydration; large piers, heavy abutments, retaining walls
Type III	High Early Strength	57% (C ₃ S), 19% (C ₂ S), 10% (C ₃ A), 7% (C ₄ AF), 3.0% MgO, 3.1% (SO ₃), 0.9% Ignition loss, and 1.3% free CaO	C₃A≦15%	When high early strength is required, fast-track construction, suitable in cold wheater.
Type IV	Low Heat of Hydration	28% (C ₃ S), 49% (C ₂ S), 4% (C ₃ A), 12% (C ₄ AF), 1.8% MgO, 1.9% (SO ₃), 0.9% Ignition loss, and 0.8% free CaO.	C ₃ A≦7%, C ₂ S≥40%, C ₃ S≦35%	When low heat of hydration is required, used when mass of construction, such as large dams.
Туре V	High Sulfate Resistance	38% (C ₃ S), 43% (C ₂ S), 4% (C ₃ A), 9% (C₄AF), 1.9% MgO, 1.8% (SO ₃), 0.9% Ignition loss, and 0.8% free CaO	C ₃ A≦5%, (C₄AF) + 2(C ₃ A)≦20%	High sulfate resistance is required, 0.2- 2.0% weight mater soluble sulfate in soils or 1500-10800 ppm sulfate in water


 According to Nat 	ional Standard of I	People's	s Republic of Chi	ina:	
<u> </u>	GB175-2007 Commo	· ·	•		
Types	Composition	Code	Additional constituents	Strength grade	
Portland cement	clinker, 0-5%mixed	P.I	No	42.5/42.5R/52.5	
r ontana oomont	materials, gypsum		≦5% slag, limestone	52.5R/62.5/62.5	
Ordinary portland cement	cilinker, 5-20%mixed materials, gypsum	P.O	5-20% slag, fly-ash, pozzolana	42.5/42.5R/52.5 52.5R	
	clinker, 20-70%mixed	P.S.A	20-50% slag	32.5/32.5R/42.5	
Slag portland cement	materials, gypsum	P.S.B	50-70% slag	42.5R/52.5/52.5	
Fly-ash portland cement	clinker, 20-40%mixed materials, gypsum	P.F	20-40% fly-ash	32.5/32.5R/42.5 42.5R/52.5/52.5	
Pozzolana portland cement	clinker, 20-40%mixed materials, gypsum	P.P	20-40% pozzolana	32.5/32.5R/42.5 42.5R/52.5/52.5	
Composite portland cement	clinker, 20-50%mixed materials, gypsum	P.C	20-50% slag, fly-ash, pozzolana, limestone	32.5/32.5R/42.5 42.5R/52.5/52.5	

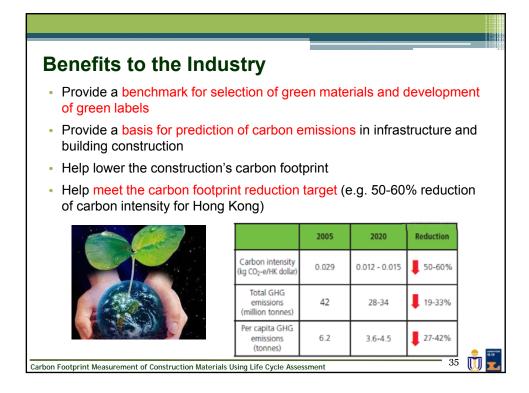

 ACC 		n Committee for Standar		
Types	Types of Cer	ment Under EN 197-1 (Europo Description	ean Standard) Amount of clinker [weight-%]	Additional components [weight-%]
CEMI	Portland cement	Comprising Portland cement and up to 5% of minor additional constituents	95 – 100	0 – 5
CEM II	Portland composite cement	Portland cement and up to 35% of other single constituents	65 – 94	0 – 5
CEM III	Blast furnace cement	Portland cement and higher percentages of blast furnace slag	5 – 64	0 – 5
CEM IV	Pozzolanic cement	Portland cement and up to 55% of pozzolanic constituents (volcanic ashes)	45 – 89	0 – 5
CEM V	Composite cement	Portland cement, blast furnace slag or fly ash and pozzolana	20 – 64	0 – 5




Stages	Input	Process	Equipment	GHG emission	
	Fuel	Extraction	Truck/Ship	Transport	
1) Raw materials extraction		Crushing	Crusher		
,		Proportioning	Weigh-feeders	Electricity	
(2) Raw meal preparation	Electricity	Grinding	Raw Grinding mill	consumption	
C		Homogenizing	Homo silo		
	Fuel	Preheating	Preheater	Fuel combustion	
	Fuel	Calcination	Rotary kiln	Chemical reaction	
		Rapid cooling	Grate Cooler		
		Conditioning Conditioning Tower		Electricity	
(3) Clinker production	Electricity	Dust Collecting	Electrostatic Precipitator	Electricity	
		Gas driving Induced draft fans (ID Fan)		consumption	
		Finish grinding	Finishing Grinding mill		
	Imported	Clinker	N/A	Clinker productio	
	Clicker	production		from other factor	
(4) Cement production		Finish grinding	Finish grinding mill	Ele etricitu	
• •	Electricity	Storage	Cement silo	Electricity	
(5) Product packaging and		Packaging	Packaging machine	consumption	
transportation	Fuel	Dispatching	Truck/Barge	Transport	




od A2 sumed for clinker; leaving the kiln system;
sumed for clinker; leaving the kiln system;
sumed for clinker; leaving the kiln system;
leaving the kiln system;
.
motoriolo
materials
od B2
tion;
nker ratio;
D leaving the kiln
r corrected for
Si, Mg-Si import
*CKD: cement kiln dust *BypassD: Bypass system dust



oon Calculation –	Part III	: Trans	portatio
Parameters	IPCC	WRI	HKEPD
Fuel consumption and type	\checkmark	\checkmark	\checkmark
Vehicle type	\checkmark	\checkmark	\checkmark
Distance	\checkmark	\checkmark	
Weight of freight		\checkmark	
e most accurate: based mmonly applied: based			· · · · · ·
	IPCC: Intergo		aal an Climata C

Results for the Cement Example					
	GHG Source	kg CO ₂ / kg clinker	kg CO ₂ –e / kg clinker	kg CO ₂ / kg cement	kg CO ₂ –e / kg cement
А	Raw materials	8.385 x 10 ⁻³	2.295 x 10 ⁻²	7.267 x 10 ⁻³	1.989 x 10 ⁻²
В	Calcination	0.551	0.551	0.478	0.478
С	Energy use	0.397	0.399	0.379	0.381
D	Imported clinker	1	1	0.058	0.058
Е	Transportation (Raw material & fuel)	0.060	0.081	0.052	0.070
F	Transportation (Product)	0.004	0.004	0.003	0.003
Cradle-to-site total (A+B+C+D+E+F)		1.020	1.058	0.977	1.010
Gate-to-gate total (B+C+D)		0.948	0.950	0.915	0.917
Cradle-to-gate total (A+B+C+D+E)		1.016	1.054	0.974	1.007

